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CHAPTER 1 

INTRODUCTION 

Loud noises such as gun blast noises from Army training facilities have brought 

concerns from nearby communities. In response to this environmental issue, the Army has 

built and implemented noise monitoring systems and noise barriers. For an accurate and 

effective solution to noise problems, fundamental acoustic scattering and propagation should 

be carefully studied. 

Studying the acoustic scattering has been difficult and incomplete by theoretical 

means. An efficient and accurate numerical method is necessary to investigate acoustic 

scattering. A comprehensive investigation was done by Alona Boag under the direction of 

George W. Swenson, Jr. at United States Army Construction Engineering Research 

Laboratory (USACERL) Acoustics Team. Alona Boag concluded that method of moments 

(MOM) was the best approach in solving acoustic scattering problems. MOM involves in 

solving an integrodifferential equation in a matrix equation form. She has written an MOM 

code which calculates the radiation patterns of an acoustic source scattered by an object. Her 

simulation result closely matches experimental data taken from a scattering of a rectangular 

baffle. 

Her MOM program is an excellent way of solving scattering problems of small and 

simple objects. However her geometry meshing scheme, explained in Chapter 2, becomes 

tedious when creating curved or complex geometry. To effectively create 3-D objects, a 

package called PATRAN has been explored. A few simple PATRAN commands create 

geometry, mesh surfaces, and output node coordinates. 

Another difficulty is in analyzing an object large compared to its wave length, X. The 

number of unknowns to be solved grows as an order of (d/X)2, and the central processing 

unit (CPU) time grows as an order of (d/X)3, where d represents a dimension of the object. 

For axisymmetric geometry,   a method called, body of revolution (BOR) technique, 
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eliminates such problems. BOR reduces the number of unknowns to an order of (d/X), 

thereby reducing the CPU time. A BOR code written in FORTRAN is used to analyze 

scattering from curved, axisymmetric bodies. The BOR code has been extensively tested for 

its validity, including a comparison to an exact solution for scattering from oblate spheroidal 

objects involving expansion of the field in series of spheroidal functions. 

Chapters 2 and 3 of this thesis present the study of MOM and BOR in detail: 

mathematical derivations, code implementation, and simulation results. In addition, an in 

depth study of oblate spheroidal functions is given in chapter 4. Chapter 5 presents the 

overall results and conclusion. 



CHAPTER 2 

METHOD OF MOMENTS 

There are several methods for solving an acoustic scattering problem. A well known 

method is geometrical optics (GO). GO yields an approximate solution for scattering from 

bodies large compared to the acoustic wavelength [1]. Because it is an approximate solution, 

only applicable to the analysis of high frequency waves, it is inappropriate for USACERL's 

scattering analysis. For example, a typical spectrum of an Army gun blast noise ranges from 

5 Hz to 60 Hz [2]. In addition, accurate prediction of scattering from a complicated geometry 

is almost impossible. The above reasons eliminate the further study of GO. 

Another well known scattering mode is Rayleigh scattering. Rayleigh scattering is 

typically used to analyze scattering from small particles such as air bubbles in liquids and 

water molecules in the air. The dimensions of practical noise barriers are comparable to or 

larger than the acoustic wavelength, so Rayleigh scattering is not an appropriate model. 

Alona Boag has investigated two rigorous numerical methods in solving acoustic 

scattering: a partial differential equation method (PDE) and an integral equation method (IE). 

She presented her findings at a USACERL seminar, and Table 2.1 summarizes her findings. 

Table 2.1 clearly indicates that the IE method is the best choice among available scattering 

solutions. The IE method leads to MOM, and the remainder of this chapter is devoted to 

MOM. 

2.1 Mathematical Derivation of The IE 

When an acoustic source radiates a wave in free space, the radiated field \|/ at an 

observation point r can be mathematically described as: 

¥(r) = - I f(rs) G(r,rs) dv (2-1) 

where f is the source at rs. The Green's function G(r,rs) is an impulse response at r due to 



f(rs). In a homogeneous medium, 

G(r,rs) = 
exp(ikR) 

4TCR 
(2.2) 

where R = |r - rs|. The wave number k is equal to 2nl\. The integration is taken over the 

entire volume v of the source. Unless otherwise noted, time dependence exp(-icot) is 

assumed. 

Table 2.1 Alona Boag's comparison between PDE and IE 

Method Partial Differential Equation Integral Equation 

Advantages • applicable to bodies comparable to 
or smaller than the wavelength 

• can analyze arbitrary media and 
geometry, including 
inhomogeneous bodies 

• sparse matrices to invert 

• IE is based on the Sommerfeld 
Radiation Condition 

• the radiation condition 
automatically satisfied 

• lower number of unknowns 
compared to PDE method 

• high accuracy 

Disadvantages • number of unknown N grows as 

(d/X)2 

• requires artificial boundary 
conditions to truncate the mesh 

• medium accuracy 

• number of unknown N grows as 

(d/l)2 

• applicable only to piecewise 
homogeneous problems 

3 
. CPU time grows as (d/X) 

In the presence of an object in the medium, a portion of the radiated wave encounters 

the object and re-radiates into different directions. The object acts as a scatterer of the original 

wave. When a field is measured at r, it is a sum of the fields due to the original wave and the 

re-radiated one. The field due to the original wave is called an incident field, and the other 

field due to the re-radiated one is called a scattered field. The sum of the incident field and the 

scattered is the total field. To distinguish each field, the incident, scattered, and total fields at 

r are denoted as Pinc, Ps, and P respectively. Thus the field in (2.1) should be re-expressed 

as the incident field Pinc. The incident field is recalculated using the Green's function 

assuming that the presence of the scatterer does not influence the propagation of the original 

wave. 



The homogeneous Green's function satisfies the Helmholtz equation, i.e., the 

frequency domain wave equation: 

|v2
+^)¥(r) = f(rs) (2-3) 

The speed of the sound is denoted as c and is assumed to be 340 m/sec in the air. 

Substituting (2.1) in (2.3) yields, 

Jv2+^.JG(r,rs) = -5(r-rs) (2.4) 

Multiplying (2.3) by G(r,rs) and (2.4) by x^r,^) and rearranging terms in each equation, 

the following relations are obtained: 

G(r,rs) VV) = G(r,rs) (f(rs) - ^ \j/(r)) (2.5) 

¥(r) V2G(r,rs) = - \j/(r) [s(r-rs) + ^- G(r,rs)j (2.6) 

The Green's second identity states that for arbitrary scalars U and V, 

£(UV\-W2u)da = }s(u^-V^ds (2.7) 

where Q is a volume and S is the surface enclosing Q. Replacing U with the pressure field, 

V with the Green's function and using relations (2.5) and (2.6), 

-f L(r)(5(r-rs)G(r,rs)+^ • 

1 \|/(r) G(r,r)  
9n 3n   ; 

dS (2.8) 

where y(r') is the field on the surface and the partial derivatives were taken with respect to a 

normal vector on the surface. The normal vector n points outward from the volume Q. Note 

that the minus sign at the right hand side of (2.7) reflects that -n is taken instead of n (see 



Figure 2.1). The surface includes the scatterer surface and the fictitious surface at infinity 

(see Figure 2.1). 

S = SM+SS 

Figure 2.1 A scatterer and a source in an unbounded space 

After substituting (2.5) and (2.6) on the left hand side of (2.8) and simplifying, (2.8) 

becomes, 

-V(r) J  G(r,rg)f(rs)dfl = - l.W)^^l.0lr,r,S*^ 
dn 3n 

dS (2.9) 
I 

By equation (2.1), the integral on the left hand side of (2.9) is essentially equal to the 

incident field Pinc. 

All fields in any unbounded medium must satisfy the Sommerfeld radiation condition: 

 lk 
\9R      J 

\j/=0asR-»°o (2.10) 

This condition ensures that the field \|/ becomes negligible at a large distance from the 



acoustic source. Applying the radiation condition to (2.10) eliminates the field contribution 

from the fictitious surface. Thus the volume integral is reduced to a surface integral: 

P(r)=P-(r)+|   |P(r')8-^-G(r,r')^ 
Ssl dn dn   ) I dSs (2.11) 

where \|/(r) and y(r') are re-expressed as the pressure field P(r) at r and P(r') at r 

respectively. 

P(r), P(r'), and the partial derivative of P(r') are the three unknowns to be solved. 

The surface is assumed to be perfectly rigid. Rigid surfaces do not move in the presence of 

acoustic pressure, thus the normal velocity field on the surfaces is zero. The pressure field on 

the surface is doubled, and its partial derivative normal to the surface is zero. Finally the IE 

of interest is 

P(r) = Pinc(r) + [   P(r') ^^ dSs (2.12) 
Jss dn 

(2.12) will be used to build a matrix equation that can be solved in a computer program. 

2.2 Evaluation Of The Singularity 

The equation (2.12) can be evaluated at any observation point r, and when r 

approaches the surface of the scatterer, the integral in (2.12) becomes singular at r=r'. 

Morita, et. al. cleverly evaluate the integral at the singularity [3]. 

Take an infinitesimally small surface around r' and call it 8S. For a convenient 

evaluation of the singularity, shift the coordinate system such that the observation point r and 

the integration point r' are (0,0,z) and (p'^'.z'), respectively (see Figure 2.2) and set z'=0. 

The integral is then approximated as, 

f   P(,)?^>dS = 
Jss 9n 

f Jexp(ikjr-r'l\ f ^     1     \ 

r(rl)T!^ndS_       P^VM) 
3n 

j 8S J 

P(r') V"-!» *i/dS       (213) 

dn 
8S 



At r=r', P(r') is approximately equal to P(r) and may be assumed invariant within 8S. 

Figure 2.2 indicates that -z is the normal vector, and taking a derivative with respect to z 

yields, 

/•a 

sP(r) 1 

JO 
3 ,, , = 2 7cp'dp'= -Xp(r)(—!=-£ dz (Vp'2 + (z-z1)2 2      IV?T^ N 

(2.14) 

Figure 2.2 Limiting procedure 

As a and z approach zero, the integral at the singularity is reduced to -±- P(r). Therefore 

when the observation point is taken on the surface of the scatterer, (2.12) should be rewritten 

as: 

pinc(r)=lp(r)+C'  P(r') 3G^r,) aas dSc (2.15) 

where / indicates the principal value of the integral. The above equation is solved to find the 

pressure fields on the surface by assembling (2.15) into a matrix equation. Once the pressure 

fields on the surface are known, then the real IE (2.12) can be solved for any observation 

location. 

2.3 Matrix Equation Assembly 

Assembling a matrix equation from IE is the key step in MOM. MOM is a technique 
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which solves the IE by dividing the scatterer surface into small patches called elements. The 

elements can be any shape as long as the shape can be used tightly to mesh the surface, 

leaving no "holes" or space on it. The simulation program written by Alona Boag uses 

triangular elements to mesh the surface. For accurate simulation results, the lengths of three 

sides of each triangular element must be approximately equal, i.e., isometric. Creating an 

element with one extremely long leg compared to the others is not recommended. Also the 

length of each triangle leg, denoted by grid length, should be less than one tenth of a wave 

length. 

Assuming the pressure fields do not very drastically within each element, P(r') in 

(2.15) can be regarded constant on each element. Usually the value of P(r') on the center of 

each element is picked; this is how the method of moment is named. The process of 

assembling a matrix equation is described for a typical rectangular barrier (see Figure 2.3). 

Figure 2.3 The meshed rectangular barrier and the coordinate system 

Let N be the total number of the triangular elements on the surface, and define pulse basis 

functions 

fj=l, on AS' 
,i*j (2.16) 

fj = 0,        on all other AS'i 

where AS'i is the Jth triangular element on the surface. Let r'j be the center coordinate of 



AS'; • Also let the unknown pressure fields on the surface be expressed by, 

P(r') = I Pj fj 
i=l 

(2.17) 

where p is a 1 x N unknown array for the surface pressure fields. Substituting (2.17) into 

(2.15), and matching the field at the midpoint of each A's, a matrix equation is obtained as 

below: 

N 
p|nc = I Zy Pj 

Expressing (2.18) in a matrix form, 

, i=l,2,3,-.,N 

line 

(2.18) 

(2.19) 

where 

JASJ 

aG(rj,r') 
9n 

dS 

Aj-2 

'i*j 

i=J 

(2.20) 

The derivative of the Green's function with respect to a normal vector is 

3G 
= lik- _   

|i-j - r'\)   4TC| rj - r'| 

,..        1    \exp(ik|ri - r'l),        ,> 
an^l^-ÜT1^!    ill.    .■■    (ri-r')-n (2.21) 

The N x N matrix Z is called an impedance matrix, and it needs be inverted to find the 

unknown surface pressures in p. 

N 
Pj = lz;/p|r 

i=l 
(2.22) 

To find a total pressure at any location r, sum the incident field and the scattered field found 

by the above method; 
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P(r) = P-(r) + £ Pj f    d~^-dS (2.23) 

2.4 Impedance Matrix Formulation 

Finding values of the Z matrix is the central part for solving the matrix equation. 

Each matrix element Zjj represents the contribution of the surface integration of jth element at 

the center of ith element. The surface integration is numerically done, and its accuracy is very 

critical to the overall accuracy of MOM. The seven-point Gaussian quadrature is used for the 

numerical integration; an integration of any 'smooth' function within a triangle can be 

accurately obtained by sampling seven points within the triangle. 

f f(r) ds = A I Wi f(r,) + 0(h6) (2.24) 
./triangle i=1 

where A is the area of the equilateral triangle and w4 is the weighting value. The error of the 

quadrature is on the sixth order of h, the radius of a circle circumscribing the triangle, so h 

must be less than 1 for accuracy. A point P inside a triangle can be uniquely expressed in 

terms of the areas of subtriangles defined by P and the vertices of the main triangle (see 

Figure 2.4). The subtriangles LI, L2, and L3 are called area coordinates and they add up to 

1. The area coordinates and weights for the seven points are listed in Table 2.2 [4]. The 

coordinates for the point inside the triangle can be expressed as 

ri = PlLl+P2L2 + P3L3 (2.25) 

where PI, P2, P3 are the three vertices coordinates of the triangle. 

1 1 



P2 

Figure 2.4 Point P within a triangular element 

Table 2.2 The area coordinates and weights 

i LI L2 L3 Wj 

1 1 
3 

1 
3 

1 
3 

270 
1900 

2 (9 + 2VT5) 
91 

(4-VT5) 
91 

(7-VT5) 
91 

(155-VT5) 
1900 

3 (4-VT5) 
91 

(9 + 2/15) 
91 

(7-/T5) 
91 

(155-VI5) 
1900 

4 (4-VT5) 
91 

(4-/T3") 
91 

(13 + 2103") 
91 

(155-VT5) 
1900 

5 ■(9-2VT5) 
91 

(4 + /TJ) 
91 

(7 + VI5) 
91 

(155 + VT5) 
1900 

6 (4 + VT5) 
91 

(9 - 2/15) 
91 

(7+VT5) 
91 

(155+VT5) 
1900 

7 (4 +115) 
91 

(4 + /T5) 
91 

(13-2VT3") 
91 

(155+/I5) 
1900 

2.5 Simulation Results 

To verify the accuracy of the MOM program, a simulation of scattering from a 

wooden baffle was run and compared to the physical measurements performed outdoors. 
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The baffle was 61 cm wide and 30.5 cm high, and a microphone was placed at the horizontal 

center, about 7.6 cm above the ground, and 2.5 cm away from the face of the baffle. The 

experimental data are taken from Benson et al. [5]. In the numerical analysis a point source is 

placed at the microphone position using the reciprocity theorem. The simulation results 

closely match the measurements (see Figures 2.5 and 2.6). Also diffraction patterns for the 

same baffle but mounted at a tilt angle have been simulated (see Figures 2.7 and 2.8). 

Total pressure field amplitude in the azimuthal plane 

Frequency: 400 Hz 

Figure 2.5 The MOM baffle simulation and measurements 1 
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Total pressure field amplitude in the azimuthal plane 

1 

0.8 

'- 

0.6 

0.4 

0.2 

0 

■ Calculated 

♦       Measured 

stA^«* 

Frequency: 500 Hz 

Figure 2.6 The MOM baffle simulation and measurements 2 

Side view 

Figure 2.7 The tilted baffle 
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Total pressure field amplitude in the azimuthal plane 

1.2 

1 

0.8 

0.6 
-I            /  '^7tL          / 

0.4 
/ i 
/   \ 

V 

N 
U.2 \     \\«^_ 

400 Hz 

500 Hz Tilt angle: 30° 

Figure 2.8 MOM simulations of the tilted baffle 2 

When one fires a gun inside a shed, the acoustic excitation may be represented as a 

point source. A simple shed has been modeled as in Figure 2.9, and the diffraction patterns 

have been studied. Figure 2.10 shows the diffraction pattern of a point source inside a shed. 

Also a simple hill has been modeled to see the diffraction patterns of gun blast noises nearby 

a hill (see Figures 2.11 and 2.12). The dimensions of the hill is small compared to a realistic 

hill, and analyzing a larger hill requires more CPU time and memory. 
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Top view 
1.5 m Side view 

+ Y-axis 

+ X-axis      p^    6.0 m 

Front view 

+ Z-axis 4 ± 0.25 m 1 

7.0 m 

+ Y-axis 

+ X-axis 

Figure 2.9 The shed 
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Total pressure field amplitude in the azimuthal plane 

Source Location: (0, 10, 0.5) m 

Figure 2.10 The MOM simulation of the shed 

Frequency: 20 Hz 

9.0 m 

Front view 
+ Z-axis 

Figure 2.11 The hill 

5.0 m 
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Total pressure field amplitude in the azimuthal plane 

Frequency: 100 Hz 

Point Source Position: (0, 5.5, 0.5) m 
Point Source Position: (0, 8.0, 0.5) m 

Figure 2.12 The MOM simulations of the hill 

2.6 Problems In MOM 

Although Alona Boag's program accurately predicts the scattering pattern, there are 

several difficulties in using her codes. First of all, the mesh generator she used is not user- 

friendly. For example, to mesh the rectangular baffle, one has to enter four vertices 

coordinates for each rectangular face of the baffle counter clockwise, looking from the 

outside of the baffle. This ensures the correct calculation of outward normal vectors. It is 

simple for the baffle with six faces, but when a geometry is complex and has many facets, it 

is tedious to enter the coordinates manually. In addition, an accurate meshing of any curved 

surface is impossible since the mesh generator assumes a flat surface. To create geometry 

and mesh its surfaces with ease, a finite element analysis package called PATRAN is 

explored. A few simple PATRAN commands create geometry, mesh surfaces, and output the 
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coordinates. Creating and meshing curvatures are simple with PATRAN. However, there is 

a drawback in PATRAN. To define outward normal vectors on surfaces of an object, the 

coordinates should be listed in counter clockwise sequence. PATRAN meshes and lists 

element coordinates arbitrarily, either clockwise or counter clockwise. Some normal vectors 

point outward, and others inward. To remove this arbitrariness, a simple routine is written. 

Assuming each element is approximately equal in size, the center coordinates of each element 

are summed up and then divided by the number of elements, N. This yields an approximate 

center coordinate of the scatterer, and a dot product of a vector from this center of the object 

to a center of any element and the corresponding normal vector should be a positive quantity. 

If negative, then it indicates the normal vector is pointing toward the center of the object, and 

the direction of the vector should be reversed. 

Other difficulties are the memory and CPU time needed in computing. Since the 

number of elements N is proportional to the surface area, analysis of an object large 

compared to the wavelength is difficult, if not impossible. As N increases the requked 

memory for storing the impedance matrix increases as N2. In FORTRAN, reserving a large, 

contiguous section of working memory becomes difficult when solving for a large number of 

unknowns. For example, in the Michigan baffle simulation at 163 Hz, 7,308 triangle 

elements are meshed, and the number of the matrix elements is 53,406,864. Each matrix 

element occupies 16 bytes of memory for a complex double precision data type. Thus more 

than 854 MBytes are needed in creating the matrix. The CPU time for a matrix inversion is 

proportional to N3. Most of the acoustic scattering simulations have been solved in a Convex 

C420 machine at the University of Illinois. The Convex C420 has four processors with 512 

MBytes of memory. It is used for high speed, heavily vectorized computations. However 

C420 has proved to be inadequate for the baffle simulation at 163 Hz. An access to a more 

powerful machine is obtained from National Center for Supercomputing Applications 

(NCSA): Power Challenge account. The Power Challenge Machine is built by Silicon 

Graphics, Inc., and it has 16 shared memory multiprocessors. Its total memory is four giga 

bytes, and it can perform 300 mega floating point operations per second (flops) per 
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processor, total of 4.8 giga flops. 

In spite of the increased capacity, a more powerful machine is needed in analyzing 

larger objects at high frequencies. The limited resources are unavoidable. One should look 

for a clever method of solving the problem instead of looking for a faster machine. A 

technique that overcomes all of the above problems, meshing, memory, and CPU time, is 

sought and implemented in Chapter 3. 
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CHAPTER 3 

BODY OF REVOLUTION 

As discussed in Chapter 2, MOM has many limitations in analyzing large, curved 

scatterers. A common example of such a scatterer is a parabolic reflector. A parabolic 

reflector is axisymmetric, so a method called body of revolution (BOR) can be used to solve 

such a case. The study of the BOR technique is based on a paper by Seybert et al. [6]. By 

taking an advantage of the axisymmetric properties, the surface integral is reduced to a line 

integral along the generator of the scatterer body and an integral over the angle of the 

revolution. The integration over the angle is performed partly analytically in terms of elliptic 

integrals and partly numerically using the Gaussian quadrature formula. A program in 

FORTRAN is written, and the same test cases in the Seybert's paper are run and compared to 

the paper. My results agree well with both the paper and the theoretical solution. This chapter 

describes BOR in detail. 

3.1 Derivation Of BOR 

The derivation of BOR is based on the Helmholtz integral formula, 

C(r) \|/(r) = f \|/(r') ^^ & + 4* Vnc(r) (3-D 

where 
c<r>=Hste)ds(r,) (3'2) 

Throughout the derivation of BOR, the time dependence of exp(icot) is used, and the Green's 

function is taken as G(r,r') = exp(-ikR)/R to follow the notations of the Seybert paper. The 

integral in (3.2) approaches -2K on the smooth surface of the body. 

Figure 3.1 illustrates a simple axisymmetric scatterer and the nomenclature needed in 

the derivation of BOR. When the scatterer, boundary conditions, and sources are 
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axisymmetric, the pressure fields and the normal velocity fields on the surface of the scatterer 

are also axisymmetric. Taking an advantage of this symmetric distribution of the fields, the 

surface integral may be reduced to a line integral. 

Figure 3.1 A simple axisymmetric scatterer 

Because the axisymmetric body is independent of the angle of revolution 0, \}/(p,9,z) 

depends only on z and p. The integral in (3.1) may be expressed as below: 

•2it H^ ajexp(-ikR(r,r') 
!0   M     R(r,r') d6(r') P(r') dL(r') 

3n     Jo 
JL V 

exp(-ikR(r,r') 
R(r,r') 

d8(r") p(r') dL(r') (3.3) 

For convenience, let 

K(r,r) = 3 /exp(-ikR(r,r') 
3n\     R(r,r') 

de(r') (3.4) 
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The above equation can be decomposed into two parts, 

and K2(r,r') = 
J'2n 

0 

1 
8MR(r,r') 

d6(r') 

(3.5) 

(3.6) 

As R approaches zero, the integrand of Ki(r,r') can be expressed in terms of a Taylor's 

series expansion, 

exp(-ikR(r,r') - 1 ^ 1 - ikR(r,r') + 0.5 (-ikR(r,r'))2 - 1 = _ik   k2 R(r,r') (3 ?) 

R(r,r') R(r,r') 2 

Let the normal component of R(r,r') be d, and the tangential component be x. Then the 

derivative of (3.7) becomes, 

ll-u   k2R(r,r')|_   k2 3R(r,r') =   k2       d (3 8) 
M 2       /       2      3n 2 yx2 + ri2 

As x approaches zero, (3.8) will be - ^, so Ki(r,r') is non-singular and can be evaluated 

numerically at R(r,r') = 0. K2(r,r') can be expressed in terms of the elliptic integrals. 

dcp 
K2(r,r') = 9n 

J-271 

0   R(r,r') 
d6(r') 

dn 1 (T k2 sin2(p) 
1/2 

d_ 
dn 

4F(7t/2,k) 
R 

(3-9) 

where F(7t/2, k) is a complete elliptic integral of the first kind with modulus k. Also, 

R2 = (pQ + pp)2 + (ZQ + zPf and k =   pQpP. The outward normal vector at point Q is 
R 

defined as n = npQp + nzQ2, and the angle of revolution is 9 = 9Q - 9P. Evaluating (3.9) 

yields, 

K2(r,r
,)=^r 

R2 

L-3F 8k    n9R\      Jwd? ak   FaR\^' (3.10) 

The derivative of F is expressed in terms of the complete elliptic integral of the second kind, 
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dF = E - k2F 
3k      kp 

(3.11) 

J'2K 

(l - k2sin2cp)    dcp and k' = (l - k2)    . Substituting above expressions and 
o 

evaluating derivatives in (3.10), 

K2(r,r') = 4- 
R2 

'l    RE     1RF   E(PQ + PQ)L       E(zQ-zp) 
2
PQP   

2 PQ        RF 
npQ —     _    nZQ 

FR 

Thus the surface integral in (3.1) is expressed as a line integral as below: 

C(r) \|/(r) = I \jr(r') K(r,r') p(r') dL(r') + 4rc Vnc(r) 

where C(r) = An + I K2(r,r') p(r') dL(r')- 

(3-12) 

(3.13) 

3.2 Numerical Implementation 

Equation (3.13) can be numerically evaluated along a contour L of an axisymmetric 

body. The line L is divided into segments for integration (see Figure 3.2). 

Element 1 

Nodel 

Element 2 

>*P 

Element 3 

Element 4 

Figure 3.2 Discretization on the contour L 
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The line L is divided into four elements where each element is made up of three nodes. The 

contour along the line L is assumed to be varying quadratically, and the variation is called a 

shape function, Na(5). A quadratic shape function is defined as below, and it provides a 

more accurate description of the contour than does a linear shape function. £ is called a local 

coordinate and ranges from -1 to 1, and a is called a local node number and ranges from 1 to 

3. 

Na(^) = -^ + ^2      >o=l 

Na(^) = l-^2 .o = 2 (3-14) 

Na(Ö = £$ + ^2 >o = 3 

The actual coordinates can be represented in terms of the shape function and local coordinate, 

P(Ö = I Naß) Pa 
a=1 (3.15) 

zß)= lNa©Za 
a=l 

The above equations map each element on the body onto a straight line in the local coordinate 

pi p2 p3 
-♦- 
-1 0 1    l 

Element i Local coordinate 

Figure 3.3 The element mapping onto the local coordinate system 

Similarly the pressure fields \\f along L are approximated using the same shape function. 

3 

Vm® = I No® Vmo 
«=1 (3.16) 

where \|/ma is the value at node a on the element m. Because the fields distribution and the 

contour are described using the same shape function, the formulation is said to be 

isoparametric. 
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Applying the above scheme to the line integral Equation (3.13) yields, 

N      3 i 
where 

C(r)\|/(r)=X   I Vma     K(r,r,(^))Na(^)p(^)Jm(^)d^ + 47C\|/nc(r) 
m=l a=l J-i 

3     fl 
C(r) = 47C+I       K2(r,r'ß)) pß) Jmß) d$ 

m=l J-l 

(3.17) 

(3.18) 

N is the total number of elements used to discretize the scatterer body, and Jm(£) is the 

Jacobian of transformation for element m. 

fi_p]2Jdz}2 1/2 

mi w 
(p3 - pi) £ + (p 1 + p3 - 2 p2f +1(z3 - zl) £ + (zl + z3 - 2 Z2)2 1/2 

(3.19) 

Therefore for any point P on the surface of the scatterer, whose global node number is j, the 

integral equation can be expressed as follow: 

3    '3 / N 

" I    I Vma <j + Vj   1 + X  Cmj    = \|^ 
m=l a=l \        m=l ' 

nc 

where 

and 

»£j = 4^ f  K(Pj,Ö N„ß) pß) Jmß) d^ 

Cmj=^f  K2(Pj4) pß) Jm($) d£ 

(3.20) 

(3.21) 

(3.22) 

Equations (3.20) to (3.22) apply to each node, and those M equations make up a 

matrix equation for BOR. 

(3.23) 

For integration on the t, axis, the Gaussian quadrature was used. Initially a 4-point Gaussian 

quadrature formula was used to evaluate the integral. Comparing with the theoretical solution 

¥ = ^nc 
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revealed that the 4-point Gaussian quadrature introduced 20 - 30% error. 6- or 8-point 

Gaussian quadrature must be used for an accurate numerical integration. In addition the 

number of total nodes were varied, and the number of nodes did not contribute much to the 

accurate analysis. For example, scattered patterns from 9, 17, and 33 node-bodies were 

similar to one another. Thus beyond a reasonable number of nodes, the number of total 

nodes will lengthen the computational time without any improvement on the accuracy. 

3.3 Scattering From Spheres 

Several cases were run to verify the validity of the code. To compare with the results 

from the reference paper [6], identical test parameters were chosen. Seybert et al presented 

the scattered pressure field patterns of spheres due to an incident plane wave [6]. The test 

case results closely agree with the results from the paper. In addition, a theoretical scattering 

pattern for Figure 3.4 was computed in Mathematica for a further comparison. Due to its 

simple geometry, scattering by a sphere can be solved analytically. For a rigid sphere with a 

plane wave incident in -z axis, the total field is [7], 

yot = ync + ^ = £ (-I)" (2n + 1) [jn(kr) - a'n h^kr)] Pn(cos6) (3.24) 
n=0 

i' (ka) 
where in and h(

n
!) are spherical Bessel and Hankel functions, respectively. Also a'n = —J-  J n lV(ka) 

where a is the radius of the sphere. Pn is the associated Legendre function.Since the incident 

field is expC-ikr cosO), the scattered field is Vot - exp(-ikr cosG). In the actual calculation of 

the analytic solution, the summation in (3.24) were added up to n = 30 (see Figure 3.5). The 

test cases involving only one scattering body were compared to the analytic solutions, and 

both my results and [6] closely followed the analytic solutions (see Figure 3.6). For test 

cases involving two discrete spheres, approximate solutions, which neglected the interactions 

between the two bodies, were compared to the numerical solutions (see Figures 3.7, 3.8, 

and 3.9). 
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t Incident planewave 

I + Z-axis 

p axis 

I 

Figure 3.4 Scattering from one sphere 

Scattered pressure field amplitude in the azimuthal plane 

0.14 r- 

0.12 ;_ 

0.1 

0.08 

0.06 

0.04 
0.02 

0 

BOR 
♦      Analytic 

ka = 2 

Field distance from the sphere: 5a 

Figure 3.5 The BOR simulation and analytic scattering patterns of the sphere 
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Scattered pressure field amplitude in the azimuthal plane 

ka = 4 

Field distance from the sphere: 5a 

Figure 3.6 The BOR simulation of the sphere 

t 
Sphere 1 

Incident 
planewave 

Z-axis 

p axis 

Sphere 2 

Figure 3.7 Scattering from two spheres 
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Scattered pressure field amplitude in the azimuthal plane 

kRl =kR2= 1 

kRl =kR2 = 2 

d = 5Rl 

Field distance from sphere 1: 3 Rl 

Figure 3.8 The BOR simulations of the two spheres 1 

Scattered pressure field amplitude in the azimuthal plane 

0.25 

0.2 

0.15b 

kRl = l;kR2 = 0.5 

kRl = l;kR2 = 2 

d = 5Rl 

Field distance from sphere 1: 3 Rl 

Figure 3.9 The BOR simulations of the two spheres 2 
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3.4 Scattering From Parabolic Reflectors 

Comparing the simulation results in Section 3.3 is not adequate for a complete 

validation of the BOR code. Scattering from the spheres is axisymmetric regardless of the 

propagation direction of the incident field. Also only the diffractions due to a plane wave 

incidence have been compared and validated. For a complete testing of the BOR code, 

scattering due to a point source incident on an object such as a parabolic reflector should be 

tested. 

Simulations on the diffractions of the parabolic reflectors can be useful since the 

parabolic reflectors are used as acoustic amplifiers [8]. Recording bird sounds in the 

wilderness is not a trivial task for ornithologists since the bird sounds may not be loud 

enough to be distinguished in the presence of background noises. Many ornithologists use 

parabolic microphones to record bird sounds. A parabolic microphone is a parabolic reflector 

dish with a microphone attached to the dish. Typically the microphone is located at the focal 

point of the parabolic reflector because the fields will arrive in equi-phase at the surface of the 

reflector. Using the reciprocity theorem, a diffraction pattern due to a point source at a focal 

point is identical to the reception pattern of the microphone located at the focal point. 

Although the use of the parabolic microphones are common in bird recordings, exact 

reception patterns are not supplied by their manufacturers. The receptivity of parabolic 

reflectors is thought to be highly directional. Manufacturing parabolic microphones is not as 

simple as building flat baffle-type directional microphones because of the curvature. Thus the 

price of the parabolic microphones are quite expensive. The diffraction patterns from various 

parabolic reflectors can be accurately calculated by the BOR code. Note that as the focal point 

is place farther away from the reflector, the curvature of the reflector becomes more flat (see 

Figure 3.10). Figures 3.11 through 3.15 show far field diffraction patterns for parabolic 

reflectors whose diameters are twice the acoustic wavelength of the interest. The reflector 

analyzed in Figure 3.15 is virtually a disk since the focal point is 100 wavelengths away 

from the center of the reflector. Except for Figure 3.11, the highest directivity is achieved 

when the point source is placed at 0.5 wavelength away from the center. This is plausible 
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because the scattered fields on the surface of the reflectors have the same phase as the 

incident fields on the rigid reflectors. Therefore when the source is positioned at 0.5 

wavelength away from the center, the incident and reflected fields are also in-phase, adding 

up the field amplitudes. The patterns show that the parabolic reflectors do not neccessarily 

achieve high directivity. Large side lobes can be found depending on the positions of the 

source. Figure 3.16 compares the diffraction patterns of a parabolic reflector, disk, and a 

rectangular baffle with similar dimensions. The parabolic reflector achieves slightly higher 

directivity, and it is not enough to justify for purchasing expensive parabolic reflector 

microphones. 

Focus 

A typical parabolic reflector 

Focus 

\ 

A disk-like parabolic reflector 

Figure 3.10 The parabolic reflectors 
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Total pressure field amplitude in the azimuthal plane 

1.2  F 

Souue .11 lliv -urtai\ 

Source at 0.25 wavelength 

Source at 0.5 wavelength 
Source at 1 wavelength 

Diameter: 2 wavelengths 

Focus: 0.25 wavelength 

Figure 3.11 The BOR simulations of the parabolic reflector 1 

Total pressure field amplitude in the azimuthal plane 

Source at the surface 
■ Source at 0.25 wavelength 

■ Source at 0.5 wavelength 
• Source at 1 wavelength 

Diameter: 2 wavelengths 

Focus: 0.5 wavelength 

Figure 3.12 The BOR simulations of the parabolic reflector 2 
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Total pressure field amplitude in the azimuthal plane 

■ SOUUJ >>n the iurtjce 

- Souroe .it n.25 wavelength 

■ Source at 0.5 wavelength 
■ Si Hires .it 1 wavelength 
• Source at 2 wavelengths 

Diameter: 2 wavelengths 

Focus: 1 wavelength 

Figure 3.13 The BOR simulations of the parabolic reflector 3 

Total pressure field amplitude in the azimuthal plane 

■ Source at the surface 
■ Source at 0.25 wavelength 
• Source at 0.5 wavelength 
• Source at 1 wavelength 

Diameter: 2 wavelengths 

Focus: 2 wavelegths 

Figure 3.14 The BOR simulations of the parabolic reflector 4 
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Total pressure field amplitude in the azimuthal plane 

Figure 

■ SUIIIY,: a! ilu- surl :ic' 
■ Source at 0.25 wavelength 
■ Source at 0.5 wavelength 

VL 
—- Source at 1 wavelength 

Diameter: 2 wavelengths 

Focus: 100 wavelengths 
"flat disk" 

s of the parabolic reflector 5 

Total pressure field amplitude in the azimuthal plane 

Parabolic Reflector 
Diameter: 1 wavelength 
Focal length: 0.22 wavelength 
Point source at focus 

Disk 
Diameter: 1 wavelength 
Point source centered on the surface 

Square plate 
Side: 1 wavelength 
Point source centered on the surface 

Fieure 3.16 The BOR simulations of the parabolic reflector, disk, and baffle 
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3.5 Scattering From Thin Disks 

Although the parabolic reflector simulations due to a point source could not be 

compared to known results, the simulations can still be checked for the validity. When the 

focal length of the parabolic reflector becomes large compared to the wavelength, the shape 

of the reflector resembles a thin disk. Diffraction of a thin disk has been rigorously analyzed 

previously by many scholars [7, 9, and 10]. Leitner presented the diffraction of sound by a 

circular disk due to a plane wave incidence [7], and the exact theoretical values based on the 

wave functions of the oblate spheroid were plotted in his paper. Also Wiener's 

measurements supported Leitner's work [10]. 

In order to compare with the Leitner's results, the same test cases were run using 

BOR code (see Figure 3.17). Figures 3.18, 3.19, 3.20, 3.21, and 3.22 show the BOR 

simulation results. The BOR simulation results agree with the Leitner's exact theoretical 

calculations, and they match closer to the experimental data than the Leitner's results [9]. 

There is no study on the diffraction patterns due to a point source incidence although 

an exact solution exists. The solution is expanded in terms of oblate spheroidal wave 

functions which are not simple to calculate. Since the oblate spheroidal wave functions are 

not available in any mathematical software package, a computer code is written to calculate 

the functions which are discussed in Chapter 4. 

Incident plane wave 
Shadow 

side 

Figure 3.17 The thin disk 
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Total pressure field amplitude on the surface of the disk 
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Distance from the center of the disk 

Figure 3.18 The BOR simulation of the disk 1 
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Figure 3.19 The BOR simulation of the disk 2 
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Total pressure field amplitude on the surface of the disk 
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Figure 3.20 The BOR simulation of the disk 3 

Total pressure field amplitude on the surface of the disk 
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Figure 3.21 The BOR simulation of the disk 4 
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Figure 3.22 The BOR siittulation of the disk 5 
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CHAPTER 4 

SPHEROIDAL WAVE FUNCTIONS 

Chapter 3 describes BOR in detail and presents the BOR simulation results compared 

with the experimental, analytic and numerical solutions from [5, 6, 7, 8, 9, and 10]. 

However those results are valid only for an incident plane wave, and no solution is available 

for a point source excitation. In order to verify the BOR scattered patterns for a point source 

excitation, an analytic solution for an axisymmetric geometry must be sought. Studying the 

oblate spheroidal geometry is a good way to verify the BOR codes. A "fat" spheroid 

represents a sphere, and a thin spheroid becomes a disk. 

4.1 The Oblate Spheroidal Geometry 

The oblate spheroidal coordinates (£,T|,(|)) shown in Figure 4.1 are related to the 

rectangular Cartesian coordinates (x,y,z) by the transformation 

x = i-dVfe2+l)(l-r|2) cos<|> 

y = -Ld Vl^2 + l)(l -ri2) sin<J) 
(4.1) 

z = i-d^Ti 

where 0 < i; < °°, -1 <T|< 1, and 0 <<J><2K. The z-axis is the axis of symmetry, and the 

interfocal distance, minor axis, and major axis are d, d£ and dV t, +1 , respectively [6]. 

Because of the axisymmetry there is no <|> variation, so <j> is assumed to be zero in the rest of 

this chapter. 

The exact solution for an acoustically hard oblate spheroid due to a point source 

excitation on z-axis (T|o = 0) is computed by Bowman et al. [7] as 
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1 
Non 

Ro^-icäk) 
RS'C-ic^i) o(3) 

RSVici^l) 
RlOn(-ic,iU RSC-ici^) S0n(-ic,Tl) (4.2) 

The above notations are consistent with the Hammer's notations [11]. The coordinate of the 

oblate spheroid surface, the source point, and the field point are denoted as (£i,rii,0), 

(5o,0,0), and (fn,<l>) respectively. Also £< and £> take the minimum and maximum values 

between the source point and the field point coordinates respectively. 

n = 0.866 

>- x 
T| = 0 

r|=-0.5 

Tl = - 0.866 

Figure 4.1 The oblate spheroidal coordinate system 

The oblate spheroidal coordinate system is one of the coordinate systems in which the 

scalar wave equation 

(v2 + k2)x|/ = 0 (43) 

is separable [11]. To express this equation in spheroidal coordinates, the following relation 

for metrical coefficients, h^, hr,, and h^ are defined by 
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dx2 + dy2 + dz2 = h\ d£2 + h2 dri2 + h2 &$ (4.4) 

where the scale factors are defined in [12] as, 

hH $   +T]2 

U2
+i 

h -d. 
/t2        2\l/2 

h,=i[(i-^)fe2
+i); 

U-n2/ 
1/2 

«>   -2 (4.5) 

With the use of the expression for the Laplacian operator in orthogonal curvilinear 

coordinates, the following differential equation is obtained [12]. 

d ,.    ^ 3      d U2 , ,)d   ,       ^2 + TI2 

^     '*i  ar    ;a^  fe2 + i)(i-^a^2 + c fe2w) \(/=0 (4.6) 

where c = 1 kd. By the usual procedure of the separation of variables, the solution of (4.6) 

is found as 

Vmn = Smn(-ic, r|) Rmn(-ic,i£) exp(im(f>) (4.7) 

The angle and radial functions, Smn(-ic,r|) and Rmn(-ic,i^), satisfy the ordinary differential 

equations [11] 

d_ 

fe2+l)^-Smn(-ic,iS) 

(l-T|2)^--Smn(-ic,Tl) 

W-ic)-^2-^2- 
$+1. 

?Lmn(-ic) + c2T1
2-Jn2 

1-T12 

Rmn(-ic,i^) = 0 (4.8) 

Smn("ic,TT) = 0 (4.9) 

The angle and radial functions are the key functions in computing (4.2). All of the variables 

in (4.2) are evaluated at m = 0, and the rest of this chapter assumes m = 0. Flammer 

describes the derivations of the angle and radial functions in detail [11], and the following 

two sections briefly explain his derivations since understanding the derivations are crucial in 

developing a computer code. 
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4.2 The Angle Functions 

In the differential equation (4.9), S0n is obtained from the expansions in the 

associated Legendre functions of the first kind [11]: 

oo 

S0n(-ic,Tl)= I' d?n(-ic) Pr(Tl) (4-10) 
r=0,l 

The prime over the summation sign indicates that the summation is over only even values of 

r when n is even, and over only odd values of r when n is odd. Substituting (4.10) in (4.9) 

and the use of the associated Legendre differential equation and the recursion formulas for 

the associated Legendre functions yield the following recursion formula for the coefficients 

d?n [11]: 

(r + 2)(r+l)c2don 

(2r + 3) (2r + 5) ^+' 

r(r+l)-l       2 r(r+l)-^on-(2r.1)(2r+3)c dpn +     r(r-l)c2       0   = o (r > 0) (4.11) 
Qr      (2r-2)(2r-l)^-2 

Finding the solution to the above recursion formula is the key step in obtaining the angle 

functions since the associated Legendre functions are relatively well-known functions. A 

FORTRAN subroutine from Numerical Recipes was used for the Legendre functions (see 

Appendix C). 

For convenience, let 

L~2 Yr = r(r+1)-£C 1+ 1 
(2r -1) (2r + 3)J 

,   (r>0) (4.12) 

ßr = "ISLJM  ,   (r > 2) (4.13) 
(2r -1)2 (2r - 3) (2r + 1) 

r(r-l)c2     ^ 
^r      (2r-l)(2r+l)d0n 

Substituting above notations in (4.11) yields, 
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Nr+2 = >-0n - Yr - ~-,    (r > 2) (4.16) 

Nr = -  ,   (r>2) (4.15) 
Yr - ^On " Nr+2 

and reciprocally 

Nr 

with N2 = X0tt - Yo> N2 = l0n - Yi- 

The recursion formula (4.11) must be convergent, and this condition leads to the 

iterative computations of Nr from (4.14) for large values of r. Conversely from the initial 

values N2 and N3, Nr is calculated from (4.15) for small values of r. When c is small, the 

dominant coefficient for given n is d2n [11]. Thus it is convenient to obtain the ratios of the 

coefficients d?n/d2n- It is observed that the series of the coefficient ratios obtained from 

(4.15) is accurate only for large r, and the series from (4.14) is accurate only for small r. 

Therefore for r less than n, the coefficient ratios from (4.14) are taken, and for r greater than 

n, the coefficient ratios from (4.15) are taken. 

The calculation of the coefficients are based on the accurate value of ?i0n. The 

eigenvalue for a small c2 is obtained from a series in powers of c2 [11]. 

^On(-ic) = I(-l)kl°2
n

kc
2* 

k=0 
(4.17) 

where lgn = n(n+l) 

iOn_ 1 
h  -2 [l,                1 

/ ' (2n-l)(2n+3). 

jOn _                - (n +1)2 (n + 2)2                ( n2 (n - l)2 

- 3) (2n -1)3 (2n + 1) 2 (2n - 1) (2n + 2) (2n + 3)3 (2n + 5)    2 (2n 

iOn_ l6   - 
n2 (n - l)2 

 i 1 +  (n +1)2 (n + 2)2 

A = - 

(2n - 5) (2n - 3) (2n -l)5 (2n + 1) (2n + 3)    (2n - 1) (2n + 2) (2n + 3)5 (2n + 5) (2n + 7) 

«B-2A + 1LB+1C + 1D 

n2 (n -1)2  (n + l)2 (n + 2)2 

(2n - 5)2 (2n - 3) (2n - l)7 (2n + 1) (2n + 3)2   (2n -1)2 (2n + 1) (2n + 3)7 (2n + 5) (2n + if 
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B = 
n2 (2n - l)2 (2n - 2)2 (2n - 3)2 (n + l)2 (n + 2)2 (n + 3)2 (n+4) 2 

(2n - 7) (2n - 5)2 (2n - 3)3 (2n - l)4 (2n + 1)   (2n + 1) (2n + 3)4 (2n + 5)3 (2n + 7)2 (2n + 9) 

(n + l)4 (n + 2)4 n4 (n - l)4 

" (2n + l)2 (2n + 3)7 (2n + 5)2   (2n - 3)2 (2n - l)7 (2n + l)2 

p_ (n-l)2n2(n+l)2(n + 2)2 (418) 

(2n - 3) (2n - l)4 (2n + l)2 (2n + 3)4 (2n + 5) 

In the numerical computation, truncating the summation up to k = 4 yields sufficiently 

accurate eigenvalues for small c2. For a large argument, an asymptotic expansion is used 

[11]. 

Xon(-ic) = - c2 + 2c (2v + 1) - 2v (v + 1) -1 + Aon (4-19) 

where v = a for n even and v = ^ for n odd. Aon is defined as 

Aon = I ß? C-k 
k=l 

ß?n = - 2-3 q (q2 + 1) ,    ßS" = - 2"6 [5q* + 10q2 + l] 

ß§n = - 2-9 q [33q4 + 114q2 + 37] ,   ß? = - 2"10 [63q6 + 340q4 + 239q2 + 14]        (4.20) 

where q = n + 1 for n even and q = n for n odd. 

The power series and asymptotic expansion methods are not sufficient for 

intermediate values of c2, and the eigenvalue should be refined by Boukamp's method of 

approximation. The eigenvalue is obtained from a transcendental equation U which is 

originated from equations (4.15) and (4.16) [11] 

U(Xo„) = Ui(?ion) + U2(Xo„) = 0 (4.21) 

where 
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Ui(?iOn) = -% + ^On 
ßn 

Yn-2 " ^On  " Nn-2 
and    Ui(A,0n) = 

ß n+2 

Yn+2 " ^On  " Nn+4 

(1) Note that Nn.2 is evaluated by the equation (4.16) and Nn+4 is evaluated by (4.15). Let Xon 

be the approximate eigenvalue calculated from either of the above two methods, and 8A,on be 

the difference between the actual eigenvalue and the approximate value. 

0 = U(Xon) = U(A-(0n) + &o„) » U(?l(o1
n

)) + 5U (4.22) 

by finding the first variation of U due to the variation SÄ-on- If the variation 8?ion is made in 

the eigenvalue, the variation on (4.16) is 

5Nr+2 = 8?ion + -%roNr 
(Nr)2 

(4.23) 

Likewise, the variation on (4.15) is 

5Nr = ^[5Nr+2-6^oJ 
ßr 

By iteration of (4.23) and (4.24) the variations of U are obtained 

ßn ßn-2 ßn-4 
8U] = Skon 

5U2 = 5^0n 

1+_ßn_+      ßnßn-2       +. 

(Nn)2     (^nf^n-2?     (Kn?(Nn.2f (Nn.4f 

(Nn)2 | (Nn)2 (Nn+2f | (Nn)2 (Nn+2)2 (Nn+tf i 

ßn ßn ßn+2 ßn ßn+2 ßn+4 

(4.24) 

(4.25) 

(4.26) 

Substituting (4.25) and (4.26) in (4.22), SA,0n is found to be 

8X,0n = 
!   ,     ß°     ,       ßnßn-2        , 

(Nn)2     (Nn)2(Nn.2)2 
K+2?  , K+2)2 (Nn+4)2   , 

ßn+2 ßn+2 ßn+4 

(4.27) 

The new eigenvalues obtained by the above method yield exactly same eigenvalues listed in 

[12]. Thus the Boukamp's method leads to remarkably accurate eigenvalues, and this 
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accuracy is the key in calculating the coefficients. 

Once the coefficient ratios are determined accurately, the actual values of the 

coefficients can be obtained in terms of an arbitrary coefficient value. Flammer uses a 

normalization scheme [12] such that each spheroidal angle function reduces exactly to the 

corresponding associated Legendre function when c becomes zero. This normalization 

follows Chu and Stratton's normalization scheme [12] except that the normalization is carried 

out at r| = 0. Thus using the normalization relations below, the coefficients are completely 

determined. 
°°   /  i\2 -1 / i\n/2 „1 

even (4.28) 

y    (-lfiVl)!     ,0. (-lff(n+P! for n odd (4.29) 

Once the expansion coefficients are determined, Nnn from (4.2) is easily found as below 

[11]. 

Non = 2 I 
rÄi(2r+l)r! 

(4.30) 

4.3 The Radial Functions 

The radial functions satisfy the differential equation (4.9). The eigenvalue in (4.9) is 

identical as in (4.8) of the angle function. The radial functions are found in terms of the 

spherical Bessel, Neumann, and Hankel functions [8]. 

1-1   „ 

where 

RigC-iciÖ = I' d?" 
r=0,l 

X'   Pn d?n Z^(C$) 
r=0,l 

Z<P}(z) = y^Jr+L(z) forp=l 

ZfP>(z) = Y^Yr+i(z) forp = 2 

(4.31) 

(4.32) 
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J and Y are Bessel and Neumann functions, respectively. Similar to Hankel functions, the 

radial functions are related likewise [12] 

R^C-ici^) = R(on(-ic,i£) + i RS(-ic,i$) 

Rj£(-ic,i$) = R^-ic,^) " * RS(-ic,iÖ 
(4.33) 

(4.33) makes defining the radial functions easier. The derivative of R0n(-ic, i£) is easily 

obtained by taking the first derivatives of RQn(-ic,i£) and RQn(-ic,i£). 

-l 

Rgc-ic,*) = 
r=0,l 

I1 i™ d?n z;py(c^) 
r=0,l 

(4.34) 

However calculating the radial function of the second kind for small values of £ is not 

suitable since the Neumann function converges poorly for small arguments. For small values 

of £, a better numerical method should be used to calculate the radial function of the second 

kind. 

The angle functions and the radial functions are related by joining factors KQP
n   [12], 

S^-iciS) = K(
0

p
n

}(-ic) R^-ic,^)      for p = 1, 2 (4.35) 

where 

nll'd?" 
KL(-ic) = T-=&   for n even 

011 2nd°0
ng)2! 

4n ("ic) = - 
3 (n + 1)! X' d?n 

 —   for n odd 
ic2nd0n(D^)!(Dil)! 

ic2n(^!d§n~ 
.(2),:^_        12/      _X'd?n  forneven 4;;(-ic)=- n! r=0 

(2) —- l 2  ) I   2   i_LIId0n  fornodd Knt;(-ic) = - 
3(n+l)! =1 

(4.36) 
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Based on the above relations, Flammer has derived power series expansions for the oblate 

radial functions as below [11]. 

R(2)(-ic, ft = Q*on(-ic) RS(-ic,iÖ ftan-kÖ - f 1 + &>n(-ic.i$) (4-37) 

with 

«OnW. .On/ 
Qon(-iO = L 0n;    J  «o W 

(-2r)! 

r![2"r(-r)!]2 
for n even 

Q;„(-ic>=N^^-ic>;^g]ifornodd 

where aRn(-ic) = —L- . The coefficients c°,£ are 
[c°on] 

(4.38) 

egg = pL- I (-4 (r + y d°2r
n  for n even 

(k!)2 r=k v       z/k 

c8E-7^I(-r)k(r + 3-)<i   fornodd 

(k!)2 r=k l      2/k 

where(r)k = r(r+ 1) (r+ 2)-•• (r+ k- l),(r)o = 1. 

The function g0n in (4.37) satisfies the inhomogeneous radial equation [11] 

-d-k2 + l) -i- - W-ic) + c2^2] go„(-ic^) = - 2 Q*0n(-ic) A RJJ!(-ici$) 
d^ d£ J d^ 

(4.39) 

(4.40) 

It is convenient to expand gon in the form 

>0n e2r+l 
g0n(-ic4Ö = Z Bgf T      for n even 

r=0 

gon(-ici^) = I B°2^
2r  fornodd 

r=0 

(4.41) 

since the power series expansions are used for the values of £ which are close to zero [11]. 

After substituting (4.41) in (4.40) and rearranging, the following recursion formulas for B2f 

are obtained [11]. 
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(2r + 2) (2r + 3) B«r
n
+2 + [(2r + 1) (2r + 2) - Aon(-ic)] Bj + c* B°2r

n.2 

oo 

= -2Q*0n(-ic)[K(
0

1
n

)(-ic)]"1   I   c°2U(-ic)2k(k+1)  for n even, 

(4.42) 

k=r+l 

(2r + 1) (2r + 2) B°r
n
+2 + [lx (2r + 1) - W-ic)] Bg + c2 B°2r

n.2 (4.43) 

= -2Q*(-ic)[i-1K(
n

1
n

)(-ic) 
-l 

Ic°2U(-ic)(2k+l)(k)-  X   c°2E(-ic)2k(k- 
Lk=r k=r+l 

for n odd. 

The symbol (k) denotes the binomial coefficient n   
k-,  ,. The initial coefficients Bn11 are 

(k-r)!r! u 

found in [11] as 

Bo" = [c RonC-iciO)]"1 - Q*0n(-ic) R^i-iciO)  for n 

Bon = [c R{)
1
n

),(-ic,iO)]'1   for n odd 

even 
(4.44) 

where 

R(
0
I
n

)(-ic,iO) = - 
in dgn(-ic) fo  

X' d?n(-ic) 
r=0 

;n-l A0nr 

for n even,     R^-ic.iO) = 0 for n odd 

(4.45) 
nv ?r in_1 rlurY ir\ „,, 

R(o„ (-ic,iO) = lK    }   for n odd,     R™ (-ic,iO) = 0 for n even 
oo 

32' d°n(-ic) 
r=0 

The remaining coefficients are completely determined from the recursion formulas in (4.42) 

and (4.43). 

The derivative of R^ is determined by simply taking a derivative of (4.37). 

RS"(-ic40 = Q*o„(-ic) RäJ'C-iciÖ ftan-kÖ - f1 + QonHc)^(-ic,^) + g^-ictf) (4.46) 
2J t2    1 

where g'on is 
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g'on(-ic^) = I (2r + 1) B°2? ^ 
r  for n even 

r"° (4.47) 

gU-ic^) = l2rB°2^
2r-1   for n odd 

Therefore the numerical means of calculating the radial functions are completely determined. 

4.4 Analytic Solutions 

The exact solution in (4.2) have been calculated in terms of the angle and radial oblate 

spheroidal functions. Although (4.2) is a short equation, writing a FORTRAN code for it has 

been challenging. There is a limited listing of the eigenvalues, coefficients, angle functions 

and radial functions in [11] and [12]. A portion of those values listed in [11] and [12] have 

been verified when debugging the code. In spite of the inadequate information, the code 

calculates satisfactorily. Figures 4.2 and 4.3 compare the analytic solutions obtained by the 

code and the corresponding BOR simulation results for thin disks. The exact solution in 

(4.2) involves a summation from zero to infinity for n, but a summation from zero to 30 

proves to be adequate for the code. Comparing the analytic solution has proved that the BOR 

code is valid for a point source excitation as well. 
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Total pressure field amplitude in the azimuthal plane 

• BOR simulation 

♦      Oblate spheroidal expansions 

Diameter: 2 wavelengths 

Point source on the surface 

Figure 4.2 The BOR simulation and analytic diffraction solution of the disk 1 

Total pressure field amplitude in the azimuthal plane 

1.2 

1 

0.8 -       / 

0.6 '- /C / 
0.4 

0.2 

0 

 BOR simulation 

♦      Oblate spheroidal expansions 

Diameter: 3 wavelengths 

Point source on the surface 

Figure 4.3 The BOR simulation and analytic diffraction solution of the disk 2 
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CHAPTER 5 

CONCLUSIONS 

In this thesis numerical methods for calculating diffractions of acoustic waves have 

been investigated. Diffraction patterns have been accurately calculated using the MOM code 

for simple objects small compared to their wavelength. Chapter 2 introduces the MOM and 

presents the simulation results. The MOM code is most useful for studying diffractions of 

rectilinear objects, and it is not suitable for analyzing curved objects due to the unfriendly 

meshing scheme. The BOR code is written to compensate for the shortcomings of the MOM 

code. Diffraction patterns of axisymmetric objects with axisymmetric boundary conditions 

can be efficiently calculated by the BOR code. The diffraction patterns of spheres, parabolic 

reflectors, and thin disks have been successfully calculated, and the simulation results are 

shown in Chapter 3. Diffractions due to a plane wave incidence are easily compared with 

existing references. For a point source incidence, no graphical data are available, and only 

the analytic solution is expressed in terms of the spheroidal wave functions. In Chapter 4 the 

oblate spheroidal functions are discussed in detail. A code is written to calculate the analytic 

solution, and the calculation results have verified the validity of the BOR code for a point 

source incidence. 

Note that the boundary conditions must also be axisymmetric for the BOR 

simulations. All of the BOR simulation results in this thesis are done in the full space. For a 

plane wave incidence, the direction of the propagation is parallel to the axis of symmetry, and 

for a point source incidence, the source is located on the axis. Analyzing objects in a half 

space, such as spheres above the flat ground, can also be done using the BOR code. Placing 

acoustic images of the original objects in the full space is equivalent to the original objects in 

the half space which loses the symmetry. 

The BOR code can further be improved if it is modified to account for off-axis 

incidence. The current code assumes that there is no field variation on a plane perpendicular 
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to the symmetric axis. For example, when the plane wave is incident at an angle from the 

axis of the symmetry, the incident fields on the surface of the object will vary accordingly. 

The scattered fields will have the same variation due to the variation of the incident fields. 

Finding out of a way to incorporate this variation in the BOR code will broaden its usage in 

analyzing the diffractions. 
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